

Securing the Internet of Things®

A Lightweight, Highly Performant Public Key Exchange

Algebraic Eraser (AEDH)

- Key Agreement Based on Braids, Matrices,
 Permutations, and Finite Field Arithmetic
- Is NOT "Braid Group Cryptography"
- Hard Problem: Simultaneous Conjugacy
 Separation Search Problem in the Braid Group
- Performance scales linearly with security

Performance in 65nm CMOS

2¹²⁸ Security Level

ECC 283			AE B16F256			Gain
Cycles	Gates	Wtd. Perf.	Cycles	Gates	Wtd. Perf	
164,823	29,458	4,855,355,934		352 20,206	67,730,512	71.7x
85,367	77,858	6,646,503,866	3,352			98.1x
70,469	195,382	13,768,374,158				203.3x

Wtd. Perf. Is Weighted Performance (clock cycles x gate count) and represents time and power usage.

ECC data taken from *A Flexible Soft IP Core for Standard Implementations of Elliptic Curve Cryptography in Hardware*, B. Ferreira and N. Calazans, 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), 12/2013.

Performance on ARM Cortex M3

Security Level	Algorithm	Language	ROM	RAM	Speed (48MHz)
128	AE	C + Assembly	2065	544	15ms
128	AE	С	3339	521	34ms
128	ECC(i)	Assembly (M0)	7168	540	233ms
128	ECC (ii)	C (ARM)	(?)	(?)	864ms
128	ECC (iii)	C (WolfSSL)	9780	7456	889ms
310	AE	С	656	820	74ms

ECC data: (i) Shades of Elliptic Curve Cryptography on Embedded Processors, Wenger, Unterluggauer, and Werner, Progress in Cryptology (Indocrypt 2013); (ii) Crypto Performance on ARM Cortex-M Processors, H.Tschofenig, M. Pegourie-Gonnard, IETF-92 (March 2015); (iii) SecureRF implementation

Help Review AEDH!

- We want more reviews and analysis
- Papers are available at http://www.securerf.com/

Secure RF Corporation

100 Beard Sawmill Road, Suite 350, Shelton, CT 06484

Derek Atkins

Voice: (203) 227-3151 x1343

Email: datkins@SecureRF.com

http://www.securerf.com/

